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Abstract

This paper develops a macroscopic polarization switching model which characterizes the ferroelastic
switching mechanisms inherent to lead zirconate-titanate (PZT) in a manner suitable for subsequent
transducer and control design. We construct Helmholtz and Gibbs energy relations at the lattice level
which quantify the internal and electrostatic energy associated with 90◦ and 180◦ dipole orientations.
Equilibrium relations appropriate for homogeneous materials in the absence or presence of thermal
relaxation are respectively determined by minimizing the Gibbs energy or balancing the Gibbs and rel-
ative thermal energies using Boltzmann principles. Macroscopic models suitable for nonhomogeneous,
polycrystalline compounds are constructed through stochastic homogenization techniques. Attributes
and limitations of the model are illustrated through comparison with experimental PLZT data.

1 Introduction

This model, extending the work done in [1], combines energy principles at the lattice level, theory
of thermally activated processes, and stochastic homogenization techniques to characterize hysteresis
due to ferroelectric and ferroelastic switching in a manner which facilitates material characterization,
transducer design, and model-based control design. Helmholtz and Gibbs energy relations are con-
structed at the lattice level to quantify the internal and electrostatic energy associated with 90◦ and
180◦ dipole orientations. For regimes in which thermal activation is significant, the Gibbs and relative
thermal energies are balanced through Boltzmann theory to provide equilibrium relations quantifying
local strains and polarizations as a function of input stresses and fields. In the limit of negligible
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thermal activation, the local relations reduce to minima of the Gibbs energy and enforcement of these
minimization criteria significantly improves the efficiency of the model and inversion process employed
for linear control design. Parameters such as the local coercive and interaction fields are considered
to be manifestations of underlying distributions to incorporate the effects of polycrystallinity and ma-
terial nonhomogeneities. Homogenization in this manner yields low-order models posed in terms of
effective parameters that are efficient to implement in optimization or control algorithms.

Physical mechanisms associated with ferroelectric and ferroelastic switching are summarized in
Section 2 to motivate 90◦ and 180◦ switching mechanisms that need to be incorporated in energy
relations. In Section 3, we summarize the construction of a piecewise defined Gibbs energy functional.
Minimization of this functional quantifies homogeneous, single crystal behavior in the absence of
relaxation processes. In Section 4, stochastic homogenization techniques are employed to construct a
macroscopic model for polycrystalline, nonhomogeneous materials and in Section 5, properties of the
model are illustrated through comparison and prediction of experimental PLZT data.

2 Ferroelectric and Ferroelastic Switching Mechanisms

Lead zirconate-titanate is comprised of PbZrx−1O3 (lead zirconate) and PbTixO3 (lead titanate) where
x is chosen to optimize electromechanical coupling. For temperatures above the Curie point Tc, the
structures of PbTiO3 and PbZrO3 are cubic whereas for T < Tc, the structure of PbTiO3 is tetragonal
and PbZrO3 is orthorhombic [6]. The switching mechanisms are illustrated in the context of the
paraelectric cubic and the ferroelectric tetragonal structure of lead titanate and note the analogous
behavior is observed for the orthorhombic structure of lead zirconate.

The application of an electric field E that is larger in magnitude than the coercive field Ec induces
ferroelectric switching. For PbTiO3, this causes the central Ti+4 ion to relocate to a new equilibrium
position, resulting in a 180◦ change in polarization that is parallel to the applied field as depicted in
Figure 1(a). Ferroelastic switching is caused by the application of a stress σ that is larger in magnitude
than the coercive stress σc producing a 90◦ change in polarization that is perpendicular to the applied
stress as illustrated in Figure 1(b). The ferroelectric and ferroelastic switching mechanisms cause
a hysteretic relationship between input fields E and σ and output polarization P and strains ε as
illustrated in Figure 2.

At point A in Figures 2(a) and 2(b), the electric field is sufficiently strong so that all the dipoles form
one domain that is aligned in the direction of the applied field. As the field is decreased, it approaches
the negative coercive field in the region around point B where 180◦ switching commences. Additionally,
this often includes 90◦ switching as indicated by the presence of a negative strain at point B as depicted
in Figure 2(b). At point C, all the dipoles have switched and again form one domain that is aligned in
the direction of the electric field. At point C, the polarization is opposite to that at point A whereas
the strains have the same value. As the field is increased, 90◦ switching occurs at point D and rapidly

Po
EPo

Po

σ

Po

(a) (b)

Figure 1: (a) Ferroelectric 180◦ switch in spontaneous polarization P0 induced by an applied electric
field, and (b) ferroelastic 90◦ switch induced by an applied stress.
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Figure 2: (a) Hysteretic field-polarization relation for bulk PLZT, (b) field-strain behavior of PLZT,
(c) stress-polarization relation for PLZT, and (d) stress-strain behavior of PLZT.

continues back to point A where the full 180◦ switch has occurred and the dipoles are again aligned
with the applied electric field. Figures 2(c) and 2(d) illustrate the relationship between an externally
applied stress and the polarization and strains. At point F, the dipoles are aligned in the positive
3-direction and the material acts as one domain. As the compressive stress is increased in magnitude,
it approaches the coercive stress. In the region around point G, 90◦ switching occurs and the dipoles
begin to align perpendicular to the direction of the applied stress. This is indicated by the presence
of a negative strain at point G in Figure 2(d). As the stress is reduced in magnitude, the material
remains poled perpendicular to the applied stress resulting in a decrease in the polarization in the
3-direction.

3 1-D Ferroelastic Switching Model

To facilitate model implementation, improve computational efficiency and increase the model flexibil-
ity, we employ piecewise quadratic energy functionals which are approximations of energy functionals
based on Landau–Devonshire principles. The model coefficients directly relate to measured material
properties allowing a means for parameter identification and estimation. The low-order piecewise
polynomial models also facilitate transducer and control design and incorporates both 90◦ ferroelec-
tric and ferroelastic polarization switching mechanisms. We note that aspects of the functionals are
similar to those employed for SMA undergoing austinite - martinsite phase transformations and the
reader is referred to [3, 6, 7] for details illustrating properties of the SMA relations.

3.1 Helmholtz and Gibbs Energy Relations

We consider electric field and stress inputs (E, σ) and polarization and strain outputs (P, ε). To
account for the 180◦ and 90◦ polarization switching, the polarization has three allowed dipole states
P−, P+ and P90. We define the polarization component of the Helmholtz energy to be

ψp(P ) =





η
2 (P + PR)

2 , P ≤ −PI
η1
2 (P + Pm)

2 + β , −PI < P < −P90I

η2
2 (P )2 +∆ , |P | ≤ P90I

η1
2 (P − Pm)2 + β , P90I < P < PI
η
2 (P − PR)

2 , P ≥ PI
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where

Pm =
η (PI − PR)P90I − η2P90IPI

η (PI − PR)− η2P90I
, η1 = η

PI − PR
PI − Pm

,

β =
η

2
(PI − PR)2 −

η1

2
(PI − Pm)2 , ∆ =

η1

2
(P90I − Pm)2 + β − η2

2
(P90I)

2 .

(1)

The electromechanical coupling component is given by

ψes(P, ε) = −aεP − qεP 2 (2)

where a is the piezoelectric coupling coefficient and q is the electrostrictive coupling coefficient. The
elastic energy is

ψel(ε) =
1

2
Y ε2

where Y is the Young’s modulus. The total Helmholtz energy is then given by

ψ(P, ε) = ψp(P ) + ψes(P, ε) + ψel(ε).

Balancing the internal energy ψ and the externally applied energy yields the Gibbs energy

G(E,P, σ, ε) = ψ(P, ε)− EP − σε. (3)

The necessary condition dG
dε = 0 yields

ε = Y −1
(
σ + aP + qP 2

)
.

In a manner analogous to that employed in [4] for a stress-free state, the strain is substituted into the
Gibbs energy (3) resulting in a Gibbs energy of the form

G(E,P, σ) = ψ̂(P, σ)− EP − σε. (4)

3.2 Switching in the Absence of Thermal Activation

Neglecting thermal effects, the local polarization 〈P 〉 for a single crystal with an applied stress can be
determined by solving the necessary condition ∂G

∂P = 0, or by minimizing the Gibbs energy

〈P 〉 = argmin
P
G(E,P, σ) (5)

where the Gibbs energy is defined by equation (4).
To calculate the value of the coercive field, we apply the necessary condition ∂G

∂P = 0 and solve for
the value of the electric field that results in P = PI to obtain

Ec(σ) =
2qPI − a

Y
(σ) +

2q2P 3
I

Y
− 3aqP 2

I

Y
+
a2PI
Y

+ η (PR − PI) . (6)

It is clear from (6) that the coercive field is stress dependent. The coercive stress σc can be computed
by setting Ec = 0 in (6). This results in

σc =
1

a− 2qPI

[
ηY (PR − PI) + 2q2(PI)

3 − 3aq(PI)
2 + a2(PI)

]
. (7)

The electric field required to eliminate the 90◦ minima in the Gibbs energy is denoted by E90
c . An

explicit expression for the value of E90
c is found to be

E90
c (σ) = −(σ)a+ 2qP90

Y
− 2q2P 3

90 + 3aqP 2
90 + (a2 − η2Y )P90

Y
. (8)

A direct 180◦ ferroelectric polarization switch (i.e., P± → P∓) can occur if E90
c < Ec. A 90◦ ferro-

electric polarization switch (i.e., P± → P90) can occur if E90
c > Ec and a 90◦ ferroelastic polarization

switch will occur when σ > σc.
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3.3 Switching in the Presence of Thermal Activation

For the switching criteria summarized in Section 3.2, dipole switching occurred only when the magni-
tude of the applied electric field or stress exceeded that of the coercive field or stress value of the single
crystal. However, mechanisms such as excitation from thermal effects can induce switching before
local minima are eliminated. To model this phenomena, we incorporate the effects of thermal activa-
tion. We continue to assume that the material is homogeneous and that each dipole in this collection
has the same energy landscape and are subject to the same switching mechanisms. This allows us to
model the switching that occurs by evolving the fraction of dipoles in each allowed orientation by a
population model that is similar to what is derived in [8].

In the manner detailed in [6], thermal activation processes are incorporated through the use of the
Boltzmann relation

µ(G(P )) = Ce−G(P )V/kT . (9)

Here V denotes a representative control volume, k is Boltzmann’s constant and T is the temperature.
The fraction of dipoles in each allowed orientation is given by x−, x90 and x+. Conservation of the
number of dipoles yields

x− + x90 + x+ = 1. (10)

The local polarization 〈P 〉 is given by

〈P 〉 = x− 〈P−〉+ x90 〈P90〉+ x+ 〈P+〉 (11)

where 〈P−〉 , 〈P90〉 and 〈P+〉 are the expected polarization values associated with each allowed dipole
orientation. As illustrated in [6, 8], these values are found by integrating the product of the polarization
P and the Boltzmann probability density µ(G(P )) over the allowed polarization states. This simplifies
to the relations

〈P−〉 =
∫ −PI

−∞
Pe−γG(P )dP

∫ −PI

−∞
e−γG(P )dP

, 〈P90〉 =
∫ P90I

−P90I
Pe−γG(P )dP

∫ P90I

−P90I
e−γG(P )dP

, 〈P+〉 =
∫∞

PI
Pe−γG(P )dP

∫∞

PI
e−γG(P )dP

where γ = V
kT . For computational efficiency, we can approximate these values by use of the necessary

condition ∂G
∂P = 0 which yields

〈P−〉 =
E

η
− PR, 〈P90〉 =

E

η2
, 〈P+〉 =

E

η
+ PR.

In this case, 〈P−〉 , 〈P90〉 and 〈P+〉 are the location of the minima of the Gibbs energy.
The time evolution of the dipole phase fractions are governed by the first order ODE system

•


x−
x90

x+


=



−p− p90− 0
p− − (p90− + p90+) p+

0 p90+ −p+







x−
x90

x+


 .

The system results from the assumption that transitions between the three allowed states occur only
to the nearest neighbor and can be reduced in dimension by applying the conservation relation (10).
The likelihood to switch out of the P− orientation into the P90 orientation is denoted by p− and the
notation for the remaining likelihoods is summarized in Table 1.

The likelihood p− is calculated by

p− =
1

τ

e−γG(−PI)

∫ −PI

−∞
e−γG(P )dP
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State Transition notation

P− → P90 p−
P90 → P− p90−

P90 → P+ p90+

P+ → P90 p+

Table 1: 1-D transition likelihoods.

where the relaxation time τ is the reciprocal of the frequency at which dipoles attempt a switch. The
likelihood of switching out of the P90 orientation into the P− orientation is specified by p90− and is
calculated by

p90− =
1

τ

e−γG(−P90)

∫ P90

−P90
e−γG(P )dP

.

The likelihoods p90+ and p+ are obtained in a similar manner. The likelihoods can also be evaluated
in terms of error functions resulting in,

p+ =
1

τ

e−γG(PI)

∫∞

PI
e−γG(P )dP

=
1

τ

e−α(PI+b/2)2

1
2

√
π
α · erfc (

√
α (PI + b/2))

where α =
γη

2
and b = −2(PR − E)

η
. The likelihoods p90+, p90− and p− follow similarly.

4 Macroscopic Polarization Model

Nonuniformities in the lattice structure due to polycrystallinity, material nonhomogeneities and vari-
ations across grain boundaries produce a distribution of Helmholtz and Gibbs energy profiles which
can be manifested as variations in the local coercive field and local remanent polarization. Other
variations can be produced by stress nonhomogeneities and variable effective fields.

To incorporate these effects en route to constructing a macroscopic model, we consider the coercive
field Ec to be a manifestation of an underlying density ν1(Ec) rather than fixed values which is typically
assumed for single crystals having a uniform lattice structure. To create a macroscopic model for
the polarization, we also consider the variation of effective fields in the material. As detailed in
[6, 8], an applied field E in a ferroelectric material is augmented by an interaction field EI generated
by neighboring dipoles which produce nonhomogeneous effective fields in the material. This, along
with various other processes, produces variations in the applied field that can significantly alter the
resulting polarization. To incorporate these variations, we consider the effective field Ee = E +EI to
be distributed about the applied field E with an underlying density for the interaction field EI which
we denote by ν2(EI). The introduction of variations in the effective field produces domain switching
in advance of the remanence point in accordance with observations from experimental data.

The complete macroscopic polarization model for nonhomogeneous, polycrystalline materials with
distributed coercive and effective fields is

P (E) =

∫ ∞

0

∫ ∞

−∞

〈P 〉 (E;EI , Ec) ν1(Ec)ν2(EI)dEIdEc (12)

where 〈P 〉 is the local polarization kernel given by (5) when thermal effects are negligible or by (11)
when incorporating thermal relaxation.
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5 Model Validation and Properties

In this section, the ferroelastic model presented in Section 3 is compared with experimental PLZT
data reported in [2]. The ferroelastic switching model employs the thermal activation model presented
in Section 3.3 to evolve the polarization in time. However, since the measured values exhibit minimal
relaxation, the switching model was computed with a large γ and a small τ which resulted in negligable
thermal activation. As reported in [2], the PLZT composition is also very near the rhombohedral-
tetragonal morphotropic boundary. To characterize this nonhomogenous composition, we utilize the
macroscopic polarization model of Section 4.

For the macroscopic model, we make the a priori assumption that the density for the coercieve
field is given by

ν1(Ec(σ)) =

{
c1e

−E
2

c(σ)/b1 e−E
2

c(σ)/b1 > 0

0 e−E
2

c(σ)/b1 ≤ 0
(13)

and the density for the interaction field is given by

ν2(EI) = c2e
−E2

I
/b2 . (14)

The relation Ec(σ) is specified by the single crystal value (6) and the variance of the coercive field
was estimated from the variance in the experimentally measured values in Table 2. The variance of
the effective field was estimated by the degree to which switching occurs before remanence in the
PLZT data. The parameters of the densities ν1(Ec) and ν2(EI) used in the model were c1 = 27.0,
b1 = 6.5 × 10−4 (MV/m)2, c2 = 6.0 and b2 = 5.0 × 10−3 (MV/m)2. To implement the macroscopic
polarization given by (12), a composite Gaussian quadrature was employed.

The slope of the hysteron in the 180◦ regime is given by η−1, the slope of the hysteron in the 90◦

regime is given by η−1
2 and the remanent polarization is defined by the parameter PR. The remaining

coefficients a, q and Y affect the slope and intercept of the linear Ec(σ) relation (6) and these values
can be ascertained by fitting the Ec(σ) relation to experimental data given in Table 2. The values of
Pm, η1, β and ∆ are defined in Equation (1). The value of the parameters used to model the PLZT
data are compiled in Table 3.

The model is employed with varying applied stresses as well as an oscillating electric field to match
experimental conditions; the reader is referred to [2] for details regarding the experimental procedures.
The ferroelastic model is compared to the PLZT data in Figures 3 – 5. The model parameters were
chosen to optimize the fit of the E − P and E − ε data shown in Figures 3 and 4. The ferroelastic
model characterizes the 90◦ switching that occurs in the E−P data as a compressive stress is applied
to the PLZT sample. The model also predicts a negative strain due to an applied compressive stress
as well as the butterfly nature of the E − ε data.

It is noted that a possible source of error in the model fit may arise from the rhombohedral nature
of the PLZT data since the ferroelastic model is derived in the tetragonal phase.

The datafit of the σ−ε relation shown in Figure 5 can be optimized by setting the Young’s modulus
parameters to match the slope of the appropriate part of the σ − ε curve. However, this results in an

σ(MPa) PR(C/m
2) Ec(MV/m) E90

c (MV/m)

0 0.247 0.35 ± 0.01 0.35 ± 0.01
-6 0.247 0.26 ± 0.01 0.35 ± 0.01
-10 0.235 0.19 ± 0.02 0.35 ± 0.02
-15 0.215 0.15 ± 0.02 0.39 ± 0.02

Table 2: Experimental values for σ, PR, E
90
c , and Ec for rhombohedral PLZT from data reported in [2].
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parameter value parameter value

PR 0.24 (C/m2) a 0.01 (MV/m)

PI 0.239 (C/m2) q 500.0 (MV/m)2

P90I 0.015 (C/m2) Y 20000 (MPa)

η 20.0 η2 20.0

Table 3: Parameters for the 1-D piecewise ferroelastic switching model.

underprediction of the strains in the E− ε curve. Simultaneously optimizing both the σ− ε and E− ε
relations may be possible by using higher-order terms in the electromechanical coupling energy given
by (2).

The PLZT data in [2] illustrates the stress-dependence of the remanence and saturation polariza-
tion. For applied compressive stresses greater than 15 MPa, the remanence and saturation polarization
significantly decrease. Since the remanence polarization is a fixed model parameter, the present for-
mulation of the ferroelastic model should be limited to moderate stress regimes.
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Figure 3: Macroscopic E−P relation for varying applied stresses. Homogenized 1-D ferroelastic model
(——) and experimental PLZT data (· · · ): (a) σ3 = 0 MPa, (b) σ3 = −6 MPa, (c) σ3 = −10 MPa,
and (d) σ3 = −15 MPa.
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Figure 4: Macroscopic E−ε relation for varying applied stresses. Homogenized 1-D ferroelastic model
(——) and experimental PLZT data (· · · ): (a) σ3 = 0 MPa, (b) σ3 = −6 MPa, (c) σ3 = −10 MPa,
and (d) σ3 = −15 MPa.

6 Concluding Remarks

This paper summaries a model characterizing stress-induced 90◦ and 180◦ switching inherent to lead
zirconate-titanate in a manner suitable for subsequent transducer and control design. Helmholtz and
Gibbs energy functionals were used to characterize the electromechanical behavior of homogeneous,
single crystal compounds. The construction is similar to that employed for SMA [3, 5, 6, 7] in the
sense that it is a 1-D potential with three wells corresponding to the ±180◦ and 90◦ equilibria. The
construction of this functional is phenomenological but the resulting decrease in dimension signifi-
cantly diminishes implementation time. The functionals are directly minimized to provide kernels for
characterization in the absence of thermal relaxation or balanced with the relative thermal energy
through Boltzmann principles to incorporate relaxation phenomena. The effects of material nonho-
mogeneities and polycrystallinity are incorporated by assuming that properties such as local coercive
and interaction fields are manifestations of underlying distributions rather than constants. Stochastic
homogenization in this manner provides a low order macroscopic model suitable for transducer and
control design.
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